(Use of Chemicals)
Synthetic resins such as polycarbonate are used in the making of the sensors. Special care must therefore be exercised to prevent exposure of the resistor to heavy atmosphere of ammonia, amins, alkali solutions, aromatic hydrocarbons, ketons, esters, halogenous hydrocarbons or any similar substance known to affect the reliability of the product.

(Measures to Deal with Noise Problems)
While data is being received from the sensor, on rare occasions, penetrating external noise may cause interference with the outputs. To minimize the probability of this phenomenon pay attention to the following when you program the relevant software: receiving of data should always be repeated a number of times to ensure that you obtain a mean value. Have the system determine when/how to invalidate any data received in error. When doubt occurs let the system receive the subject data again and reconfirm that you have eliminated the anomaly.

(Soldering)
Avoid wiring and soldering that causes the solder to seep through to the top of the PC board (as illustrated). This can lead to a contact failure in the terminal section. If solder seepage is unavoidable, please consult with us.

Analog Output Contact Type

(Connection Impedance)
The contact resistance (R1) in this sensor is set to a high level because it is manufactured to use the output terminals directly connected to the A/D port of the microprocessor. Consequently, set the connection impedance (R2) to greater than 1M ohm to eliminate the influence of the contact resistance (R1).

(Dew Condensation)
Avoid using the sensor where dew or water vapor might be caused to condense on the surface of the resistor—deterioration of insulation or shorting may occur.